Supervised Machine Learning Techniques to the Prediction of Tunnel Boring Machine Penetration Rate
نویسندگان
چکیده
منابع مشابه
TUNNEL BORING MACHINE PENETRATION RATE PREDICTION BASED ON RELEVANCE VECTOR REGRESSION
key factor in the successful application of a tunnel boring machine (TBM) in tunneling is the ability to develop accurate penetration rate estimates for determining project schedule and costs. Thus establishing a relationship between rock properties and TBM penetration rate can be very helpful in estimation of this vital parameter. However, this parameter cannot be simply predicted since there ...
متن کاملthe reliability of a tunnel boring machine
greater levels of complexity in tunnelling with tunnel boring machine (tbm) allow higher chances of failures that may increase the potential hazardous risks. this paper presents the results of a study on tbm reliability using risk analysis. machinery failure mode and effect analysis was applied to analyze the risks of a tbm using qs9000 and sae.j1739 recommendations. for this purpose, 48 failur...
متن کاملSimulation of tunnel boring machine utilization: A case study
Utilization is one of the main managerial factors that is applied for construction process analysis well. It directly affects the project duration and construction costs. Therefore, a utilization study in tunneling projects is essential. In this work, the utilization of an earth pressure balance Tunnel Boring Machine (TBM) in Tabriz urban railway project was studied using the Monte Carlo simula...
متن کاملBankruptcy Prediction by Supervised Machine Learning Techniques : A Comparative Study
It is very important for financial institutions which are capable of accurately predicting business failure. In literature, numbers of bankruptcy prediction models have been developed based on statistical and machine learning techniques. In particular, many machine learning techniques, such as neural networks, decision trees, etc. have shown better prediction performances than statistical ones....
متن کاملMachine Learning for NLP: Supervised learning techniques
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Sciences
سال: 2019
ISSN: 2076-3417
DOI: 10.3390/app9183715